В конце сентября минувшего года специалисты Университета ИТМО в сотрудничестве с Техасским университетом в Далласе выиграли мегагрант — на эти средства в Петербурге уже в течение ближайших трех лет будет построена первая в России лаборатория, где ученые займутся созданием оптоэлектронных устройств с качественно новой функциональностью. За основу международная команда возьмет гибридные перовскиты, а на выходе планирует получить улучшенные светодиоды (LED), новый лазер 200 mw (например, инжекционные гибкие лазеры и даже поляритонные лазеры), солнечные элементы и фотоприемники. Как будет работать уникальная лаборатория, что такое гибкие лазеры, чем они так хороши и насколько реально создать терагерцовое устройство, которое позволит видеть сквозь стены, — в нашем материале.
Сергей Макаров: В начале 2016 года мы поняли, что есть взаимный интерес, что в нашей работе существует пересечение по многим темам. Я долгое время занимался нанофотоникой, а Анвар — новыми материалами и оптоэлектронными устройствами на их основе. Мы поняли, что современная наука и технологии созрели для того, чтобы объединить эти области (в частности, гибридные перовскиты), то есть соединить новые гибридные материалы с новыми концепциями нанофотоники, чтобы сделать на этой основе новые устройства. Улучшенные солнечные элементы, новый красный лазер, фотоприемники, светодиоды — все это можно создать за счет новых концепций нанофотоники. Мы используем наночастицы, которые позволяют управлять светом на наномасштабе и делать, допустим, LED-светодиоды более яркими, лазеры более интенсивными, солнечные элементы более эффективными — в целом повышать эффективность всех оптоэлектронных устройств на основе новых материалов.
Анвар Захидов: Возьмем к примеру те лазеры, которые мы сегодня носим в кармане в качестве указки, — они крайне просты. Вы нажимаете на кнопку, от батареи идет электричество, и ток превращается в свет в твердотельных диодах. Они называются электрически накачиваемыми лазерами. Так вот наша мечта — создать такой же электрически накачиваемая лазерная указка 10000 mw, но только на гибридном перовскитном материале, который будет очень тонким и гибким. Он будет более ярким, у него будут другие, перестраиваемые в яркие цвета, он в целом будет гораздо более функционален и эффективен. И кроме того, мы сможем сделать его гибким или даже пластичным, как резина. Например, в виде небольшого платочка, который можно растягивать, или в виде прочной ткани. Это может быть даже тонкая прозрачная веревочка, которую можно обмотать вокруг пальца, нажать и из нее будет идти свет. Прикладное применение такого прибора очень обширно. Можно сделать ткани, на которых будет много лазеров. Лазер можно использовать, чтобы, например, лечить, диагностировать заболевания, диагностировать присутствие каких-то токсических веществ вокруг нас, это ведь будут очень чувствительные сенсоры. Но это все простые применения. Гораздо более интересными будут фотонные чипы, или фотонные интегральные схемы, совместимые с кремниевыми CMOS-чипами. Такие чипы смогут стать базой новых компьютеров, устройств памяти.
Источник:
http://www.htpowlaser.ru/blog/n-169.html
Сергей Макаров: В начале 2016 года мы поняли, что есть взаимный интерес, что в нашей работе существует пересечение по многим темам. Я долгое время занимался нанофотоникой, а Анвар — новыми материалами и оптоэлектронными устройствами на их основе. Мы поняли, что современная наука и технологии созрели для того, чтобы объединить эти области (в частности, гибридные перовскиты), то есть соединить новые гибридные материалы с новыми концепциями нанофотоники, чтобы сделать на этой основе новые устройства. Улучшенные солнечные элементы, новый красный лазер, фотоприемники, светодиоды — все это можно создать за счет новых концепций нанофотоники. Мы используем наночастицы, которые позволяют управлять светом на наномасштабе и делать, допустим, LED-светодиоды более яркими, лазеры более интенсивными, солнечные элементы более эффективными — в целом повышать эффективность всех оптоэлектронных устройств на основе новых материалов.
Анвар Захидов: Возьмем к примеру те лазеры, которые мы сегодня носим в кармане в качестве указки, — они крайне просты. Вы нажимаете на кнопку, от батареи идет электричество, и ток превращается в свет в твердотельных диодах. Они называются электрически накачиваемыми лазерами. Так вот наша мечта — создать такой же электрически накачиваемая лазерная указка 10000 mw, но только на гибридном перовскитном материале, который будет очень тонким и гибким. Он будет более ярким, у него будут другие, перестраиваемые в яркие цвета, он в целом будет гораздо более функционален и эффективен. И кроме того, мы сможем сделать его гибким или даже пластичным, как резина. Например, в виде небольшого платочка, который можно растягивать, или в виде прочной ткани. Это может быть даже тонкая прозрачная веревочка, которую можно обмотать вокруг пальца, нажать и из нее будет идти свет. Прикладное применение такого прибора очень обширно. Можно сделать ткани, на которых будет много лазеров. Лазер можно использовать, чтобы, например, лечить, диагностировать заболевания, диагностировать присутствие каких-то токсических веществ вокруг нас, это ведь будут очень чувствительные сенсоры. Но это все простые применения. Гораздо более интересными будут фотонные чипы, или фотонные интегральные схемы, совместимые с кремниевыми CMOS-чипами. Такие чипы смогут стать базой новых компьютеров, устройств памяти.
Источник:
http://www.htpowlaser.ru/blog/n-169.html
コメント